Types of Energy

1. Calculate the height of a 0.500 kg basketball at rest if it has 7.00 J of energy.

PE=7.003

PE= mgh > h= PE = 7.003
mg (0.500kg)(7.005)

$$h=1,43m$$

2. A 70.0 kg astronaut is on Planet X. If he has 2.00 x 10³ J of energy when he is at a height of 5.00 m, what is the acceleration due to gravity on this planet?

$$PE = Mgh > g = PE = \frac{2.00 \times 10^{3} \text{ J}}{(70.0 \text{ kg})(5.00 \text{ m})}$$

3. What is the mass of a medicine ball that has 50.0 J of energy moving at 4.50 m/s?

KE=50.03 V= 450~15 m=?

$$KE = \frac{1}{2}mv^{2}$$
 $M = \frac{2KE}{v^{2}} = \frac{2(50.05)}{(4.50 \text{ m/s})^{2}} = \frac{14.94 \text{ kg}}{1}$

4. A spring is held vertically and a $3.00~\mathrm{kg}$ mass stretches the spring $0.500~\mathrm{m}$. A) calculate the spring constant of the spring

the spring
$$F_3 = K \times \rightarrow K = \frac{F_3}{X} = \frac{29.43 \text{ N}}{0.500 \text{ n}} = \frac{58.9 \text{ N/m}}{0.500 \text{ n}}$$

M = 3.00 Fg = (3.00 Fg) (9.8) m/s²) = 29.43 N

B) find the amount of stored elastic potential energy in the spring PES= 2 Kx = = [58.9 N/m) (0.500 m) = 7.365

5. A spring is stretched from 0.0200 m to 0.0900 m. Find the amount of energy stored in the spring (k = 5.00 N/m).

PES= ZKX 2 = {(5.00 N/m)(0.0700 m)2=[0.01235] X=0.0900 m=0.0200 m=0.0700 m

Unit 7: Work, Power, Mechanical Energy Page 13